If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-4X=49
We move all terms to the left:
X^2-4X-(49)=0
a = 1; b = -4; c = -49;
Δ = b2-4ac
Δ = -42-4·1·(-49)
Δ = 212
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{212}=\sqrt{4*53}=\sqrt{4}*\sqrt{53}=2\sqrt{53}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{53}}{2*1}=\frac{4-2\sqrt{53}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{53}}{2*1}=\frac{4+2\sqrt{53}}{2} $
| 0.20x=-23 | | 5(7x-9)=8x+6 | | 0.90(x+8)=1.8 | | 16(-7x-8)=-9x+5 | | -w/5=9=13 | | 15(8x+2)=-10x+4 | | w^-13w+42=0 | | 5x^2+26=36 | | -2x^2-4=-6 | | 3.5/20=9.1/x | | 16m=144 | | -5x+5.5=17 | | 6x-15=4x-15 | | x/6=9/x | | 9(x-1)=-7x-4 | | 8x12=8x()+2 | | 16(19x-3)=10x+3 | | .97x+2.5x=100 | | 4.2n=+9 | | F(x)=x/108 | | 6x+5=20+3x | | 3(x-5)=3(2x4) | | (4x-26)=(2x-4) | | x+34+31+88=180 | | t+19+t+31+8t=180 | | 67+53+12x=180 | | s-30+s-50+s-46=180 | | 69+3a+30=180 | | 9x+4x+50=180 | | 2c+2c+84=180 | | 6t+106+38=180 | | x+0.92x=4860 |